A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference

نویسندگان

  • Bernard Ng
  • Gaël Varoquaux
  • Jean-Baptiste Poline
  • Bertrand Thirion
چکیده

Despite the clear potential benefits of combining fMRI and diffusion MRI in learning the neural pathways that underlie brain functions, little methodological progress has been made in this direction. In this paper, we propose a novel multimodal integration approach based on sparse Gaussian graphical model for estimating brain connectivity. Casting functional connectivity estimation as a sparse inverse covariance learning problem, we adapt the level of sparse penalization on each connection based on its anatomical capacity for functional interactions. Functional connections with little anatomical support are thus more heavily penalized. For validation, we showed on real data collected from a cohort of 60 subjects that additionally modeling anatomical capacity significantly increases subject consistency in the detected connection patterns. Moreover, we demonstrated that incorporating a connectivity prior learned with our multimodal connectivity estimation approach improves activation detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching

Graph matching is a challenging problem with very important applications in a wide range of fields, from image and video analysis to biological and biomedical problems. We propose a robust graph matching algorithm inspired in sparsityrelated techniques. We cast the problem, resembling group or collaborative sparsity formulations, as a non-smooth convex optimization problem that can be efficient...

متن کامل

Semiparametric Bayes conditional graphical models for imaging genetics applications.

Motivated by the need for understanding neurological disorders, large-scale imaging genetic studies are being increasingly conducted. A salient objective in such studies is to identify important neuroimaging biomarkers such as the brain functional connectivity, as well as genetic biomarkers, which are predictive of disorders. However, typical approaches for estimating the group level brain func...

متن کامل

A Novel Sparse Group Gaussian Graphical Model for Functional Connectivity Estimation

The estimation of intra-subject functional connectivity is greatly complicated by the small sample size and complex noise structure in functional magnetic resonance imaging (fMRI) data. Pooling samples across subjects improves the conditioning of the estimation, but loses subject-specific connectivity information. In this paper, we propose a new sparse group Gaussian graphical model (SGGGM) tha...

متن کامل

Hot Coupling: A Particle Approach to Inference and Normalization on Pairwise Undirected Graphs of Arbitrary Topology

This paper presents a new sampling algorithm for approximating functions of variables representable as undirected graphical models of arbitrary connectivity with pairwise potentials, as well as for estimating the notoriously difficult partition function of the graph. The algorithm fits into the framework of sequential Monte Carlo methods rather than the more widely used MCMC, and relies on cons...

متن کامل

Sparse connectivity for MAP inference in linear models using sister mitral cells

Sensory processing is hard because the variables of interest are encoded in spike trains in a relatively complex way. A major goal in sensory processing is to understand how the brain extracts those variables. Here we revisit a common encoding model [1] in which variables are encoded linearly. Although there are typically more variables than neurons, this problem is still solvable because only ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 15 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012